Journal of Organometallic Chemistry, 235 (1982) C10-C12 Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preliminary communication

ON THE STABILITY AND DECOMPOSITION OF η^{6} -(2-LITHIOCHLORO-BENZENE)TRICARBONYLCHROMIUM(0)

MARTIN F. SEMMELHACK* and CHRISTINA ULLENIUS* Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (U.S.A.) (Received April 29th, 1982)

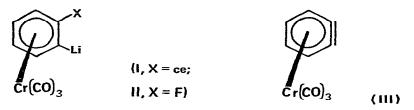
Summary

The decomposition of η^6 -(2-lithiochlorobenzene)tricarbonylchromium(0) (I) was found to follow first order kinetics with $k_{dec} = 5.1 \times 10^{-3} \text{ min}^{-1}$ at 0°C, the half life of I being 136 min at 0°C. While this dependence strongly suggests intermediacy of η^6 -(benzyne)tricarbonylchromium, trapping experiments were successful in only low yield.

Coordination of a tricarbonylchromium unit to an arene enhances the kinetic acidity of the ring C-H bonds [1]. Metalation with alkyllithium reagents produces η^6 -(lithioarene)tricarbonylchromium(0) complexes which have been characterized spectroscopically [1e] and have been trapped by reaction with electrophiles [1]. Parallel with directing effects observed in the metalation of uncomplexed arenes, η^6 -anisole and η^6 -halobenzene ligands are metalated in the ortho position [1]. The increased rate of deprotonation due to the $Cr(CO)_3$ unit allows direct formation of η^6 -(2-lithiochlorobenzene)tricarbonylchromium(0) (I) and η^6 -(2-lithiofluorobenzene)tricarbonylchromium(0) (II) in high efficiency; parallel reactions with free chlorobenzene and fluorobenzene are not possible. In addition, the trapping of I with electrophiles at -20°C [1a] suggested a thermal stability for I much higher than that of 2-lithiochlorobenzene, where decomposition within minutes at -78° C has been noted [2]. This decomposition produces 1,2-dehydrobenzene, as evidenced by characteristic in situ trapping reactions [3]. Neither the rate nor the mode of decomposition of I or II has been studied; a benzyne complex III is predicted, in a coordination mode for the benzyne ligand not previously observed [4]. Here we report efforts to define the thermal stability of I and to test for the presence of III.

^{*}On leave from Chalmers University of Technology, S-41296 Göteborg (Sweden).

We have studied the decomposition of I, between -50° C and $+33^{\circ}$ C (ether solvent). In some cases, furan was added as a trapping agent for a benzyne complex, after lithiation appeared to be complete. For example, reaction of η^{6} -(chlorobenzene)tricarbonylchromium(0) with butyllithium at -35°C for 15 min, followed by addition of CO₂ gives η^6 -(2-chlorobenzoic acid)tricarbonylchromium(0) in 98% yield [3a]. If the solution is allowed to warm to 0°C decomposition of I proceeds slowly; the clear orange solution turns dark brown and a solid forms. After ca. 1 h at 25°C, addition of aqueous HCl regenerates n^6 -(chlorobenzene)tricarbonylchromium(0), 44% recovery. Oxidation of the remainder of the crude product with excess iodine gave a complex mixture of free arenes; the major component was identified as 2-chlorobiphenyl by GC-MS analysis, but the yield was less than 5%. Under the same conditions but in the presence of excess furan, no new product incorporating the furan unit was detected by GC-MS. Heating the solution of I with excess furan in ether at reflux for 40 min led to complete disappearance of I and formation of a complex mixture. After oxidation with excess iodine, trituration with ether, and analysis of the ether soluble material (34% recovery based on chlorobenzene), showed 13 significant components. The major components were identified as naphthalene, 1-hydroxynaphthalene, 1,4-oxo-1,4-dihydronaphthalene, and 2-chlorobiphenyl, all of which can be attributed to a benzvne intermediate. However, the inefficient and unselective trapping does not establish the presence of complex III as a major intermediate.


Aliquot number	Time (min)	ln C _o /C	
1	13	0.28	
2	20	0.43	
3	35	0.51	
4	55	0.55	
5	80	0.67	
6	110	0.85	
7	140	0.95	
8	200	1.16	
9	265	1.38	
10	330	1.75	
11	405	2.11	
12	545	2.96	
13	640	3.79	

MONITORING OF THE DISAPPEARANCE OF	F o-LITHIOCHLOROBENZENETRICARBONYL-
CHROMIUM(0)	

TABLE 1

Careful monitoring of the decomposition of I (0.1 *M* in ether) at 0°C (±2°) showed first order dependence on the concentration of I. Aliquots of the solution were added to excess iodine and the amount of 2-chloroiodobenzene (quantitative GC analysis using 1-methylnaphthalene as internal standard) formed was taken as a measure of η^6 -(2-lithiochlorobenzene)tricarbonyl-chromium(0) remaining (Table 1). A plot of $\ln C_0/C$ vs. time gave a slope of 5.1×10^{-3} min⁻¹ with a correlation coefficient of 0.984 over the range $\ln C_0/C$ 0.28 to 3.79. The half life for I at 0°C is 136 min. The stability of I

is strongly increased compared to *o*-chlorolithiobenzene and, while the benzyne III cannot be observed directly nor trapped efficiently, the simple first order decomposition of I is consistent with the intermediacy of III.

Acknowledgements. We are grateful for generous support of this work by the National Science Foundation, grant CHE 7905561.

References

- (a) A.N. Nesmeyanov, N.E. Kolobova, K.N. Anisimov, and Yu.V. Makarov, Bull. Akad. Sci; USSR, Div. Chem. Sci., (1968) 2538; (b) M.F. Semmelhack, J. Bisaha, and M. Czarny, J. Amer. Chem. Soc., 101 (1979) 768; (c) J. Bisaha, PhD Thesis, Cornell University, 1979; (d) R.J. Card and W.S. Trahanovsky, J. Org. Chem., 45 (1980) 2554; (e) R.J. Card and W.S. Trahanovsky, ibid., 45 (1980) 2560; (f) R.J. Card, PhD Thesis, Iowa State University, 1975.
- 2 O.M. Nefedov and A.I. Dyachenko, Dokl. Akad. Nauk USSR, 198 (1971) 593.
- 3 (a) H. Gilman and R. Gorsick, J. Amer. Chem. Soc., 78 (1956) 2217; (b) for a review, see:
- R.W. Hoffman, Dehydrobenzene and Cycloalkynes, Academic Press, New York, 1967, p. 43ff.
- 4 For a review of metal-coordinated benzyne, see: F.H. Köhler, Chemie in Unserer Zeit, 11 (1977) 190.

JOURNAL OF ORGANOMETALLIC CHEMISTRY, VOL. 235, No. 1

AUTHOR INDEX

Abdul Malik, K.M., 121 Abel, E.W., 121 Al-Rubaie, A.Z., 59	Jeso, B. De, 17 Julia, M., 113	Righini, A., 113 Rauf Khan, A., 121
Arcelli, A., 93	Khan, A.R., 121 Kite, K., 121	Scheidsteger, O., 43 Semmelhack, M.F., C10
Blau, H., C1 Brainina, E.M., 69	Klemenkova, Z.S., 69	Sigwarth, B., 43 Snow, M.R., 83, 105
Bruce, M.I., 83, 105 Brunner, H., 77 Bui-The-Khai, 93	Linderman, R.J., 1 Liu, CS., 7 Lokshin, B.V., 69	Stolzenberg, H., C7 Strunkina, L.I., 69 Swincer, A.G., 105 Szczecinski, P., 97
Chin, CP., 7 Cocivera, M., 97	Malik, K.M. Abdul, 121 Malisch, W., C1	Taylor, R.D., 29 Thanedar, S., 65
Damrauer, R., 1 De Jéso, B., 17	Mazid, M.A., 121 McAlees, A.J., 97 McCrindle, R., 97 McWhinnie, W.R., 59	Uguen, D., 113 Ullenius, C., C10
Ezernitskaya, M.G., 69	wewninne, w.it., 55	Weakton I 77
Farona, M.F., 65 Fehlhammer, W.P., C7	Nel, M., 113 Nicholson, B.K., 83	Wachter, J., 77 Wardell, J.L., 29, 37 Wigzell, J.McM., 29, 37
Hambley, T.W., 83, 105 Hursthouse, M.B., 121 Huttner, G., 43	Pommier, JC., 17 Porzi, G., 93	Wintergerst, H., 77 Zsolnai, L., 43